Box Method for the Convection-Diffusion Equation Based on Exponential Shape Functions
نویسندگان
چکیده
We present a derivation of exponential shape functions for the convection diffusion problem. The shape functions are defined for triangular elements and can be regarded as an extension of the one-dimensional Scharfetter-Gummel discretization scheme to two dimensions. The shape function varies exponentially in the direction of the element field vector and linearly in the direction orthogonal to the element drift velocity vector. A conservative discretization scheme is constructed by means of the box method. The resulting element matrix is not necessarily an M-matrix. A measure to stabilize the discretization is briefly outlined.
منابع مشابه
Finite Element Methods for Convection Diffusion Equation
This paper deals with the finite element solution of the convection diffusion equation in one and two dimensions. Two main techniques are adopted and compared. The first one includes Petrov-Galerkin based on Lagrangian tensor product elements in conjunction with streamlined upwinding. The second approach represents Bubnov/Petrov-Galerkin schemes based on a new group of exponential elements. It ...
متن کاملFinite integration method with RBFs for solving time-fractional convection-diffusion equation with variable coefficients
In this paper, a modification of finite integration method (FIM) is combined with the radial basis function (RBF) method to solve a time-fractional convection-diffusion equation with variable coefficients. The FIM transforms partial differential equations into integral equations and this creates some constants of integration. Unlike the usual FIM, the proposed method computes constants of integ...
متن کاملNumerical solution of Convection-Diffusion equations with memory term based on sinc method
In this paper, we study the numerical solution of Convection-Diffusion equation with a memory term subject to initial boundary value conditions. Finite difference method in combination with product trapezoidal integration rule is used to discretize the equation in time and sinc collocation method is employed in space. The accuracy and error analysis of the method are discussed. Numeric...
متن کاملGalerkin Method for the Numerical Solution of the Advection-Diffusion Equation by Using Exponential B-splines
In this paper, the exponential B-spline functions are used for the numerical solution of the advection-diffusion equation. Two numerical examples related to pure advection in a finitely long channel and the distribution of an initial Gaussian pulse are employed to illustrate the accuracy and the efficiency of the method. Obtained results are compared with some early studies.
متن کاملAlternating Group Explicit-Implicit Method And Crank-Nicolson Method For Convection-Diffusion Equation
Based on the concept of alternating group and domain decomposition, we present a class of alternating group explicit-implicit method and an alternating group Crank-Nicolson method for solving convection-diffusion equation. Both of the two methods are effective in convection dominant cases. The concept of the construction of the methods is also be applied to 2D convection-diffusion equations. Nu...
متن کامل